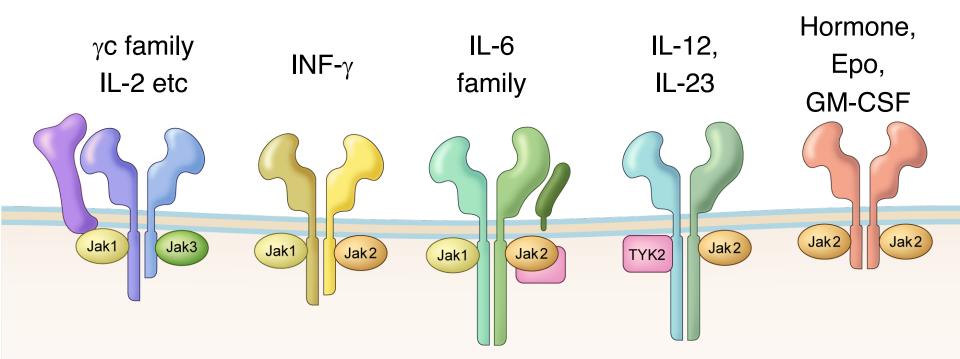
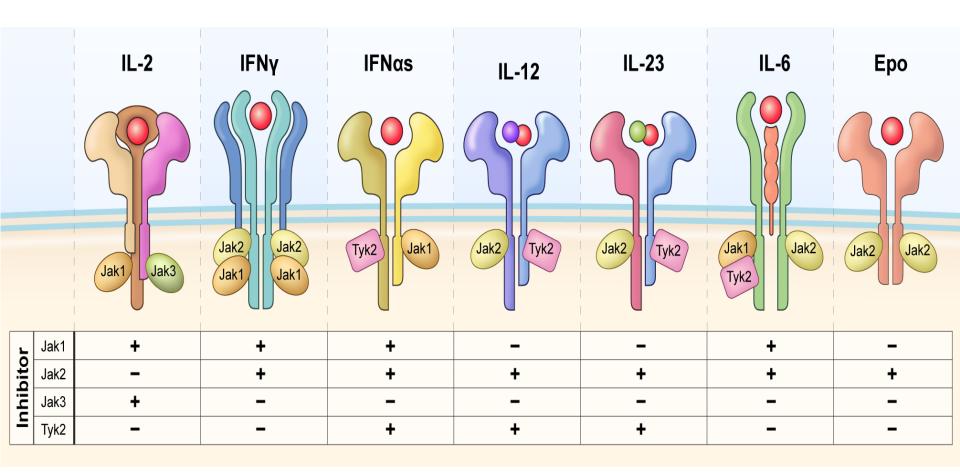

#### JAK Inhibition in RA

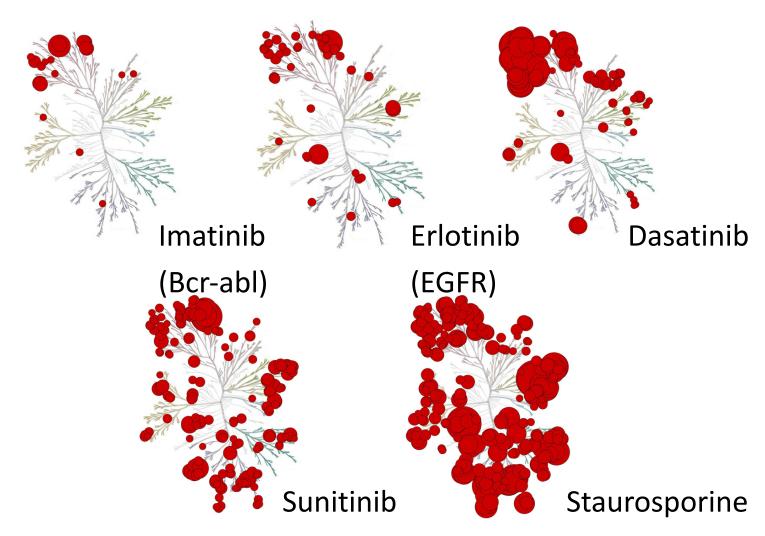
Joel M.Kremer, MD


Pfaff Family Professor of Medicine,
Albany Medical College,
Director of Research,
The Center for Rheumatology

## Targeting JAKs For the Treatment of Rheumatoid Arthritis


- Four members of JAK tyrosine kinase family
  - JAK1, JAK2, JAK3 and Tyk2
- Non-receptor tyrosine kinases required for signaling of cytokines and growth factors
- Typically 2 different JAKs associate with the cytokine receptors to initiate signaling
  - JAK2 is an exception
- JAK1 and JAK2 mediate the signals of cytokine targets in inflammatory diseases
- JAK3 is primarily involved in T-cellmediated immune function

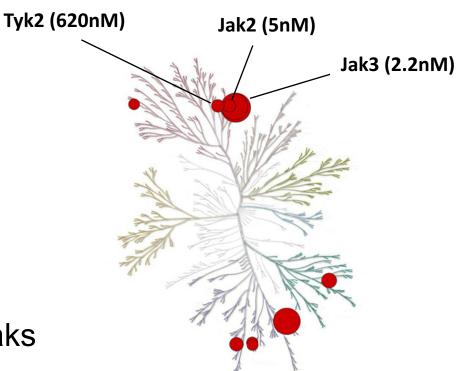



# Jaks and Signaling by Type I/II Cytokine Receptors



- •Four Jaks: Jak1, Jak2, Jak3, Tyk2
- work in pairs, except homodimeric hormone receptors




## Tyrosine Kinase Inhibitors: far from selective



# Comparison of JAK inhibitors in Clinical Development (Enzyme Assays)

| JAK<br>inhibitor | Selectivity       | JAK1<br>(IC50, nM) | JAK2<br>(IC50, nM) | JAK3<br>(IC50, nM) | TYK2<br>(IC50, nM) |
|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|
| Tofacitinib      | JAK1, 2,<br>and 3 | 23                 | 41                 | 16                 | 340                |
| baricitinib      | JAK1 and<br>2     | 5.9                | 5.7                | >400               | 53                 |
| VX-509           | JAK3              | Unknown            | Unknown            | Unknown            | Unknown            |
| filgotinib       | JAK1              | 10                 | 28                 | 810                | 116                |

## Selectivity of Tofacitinib

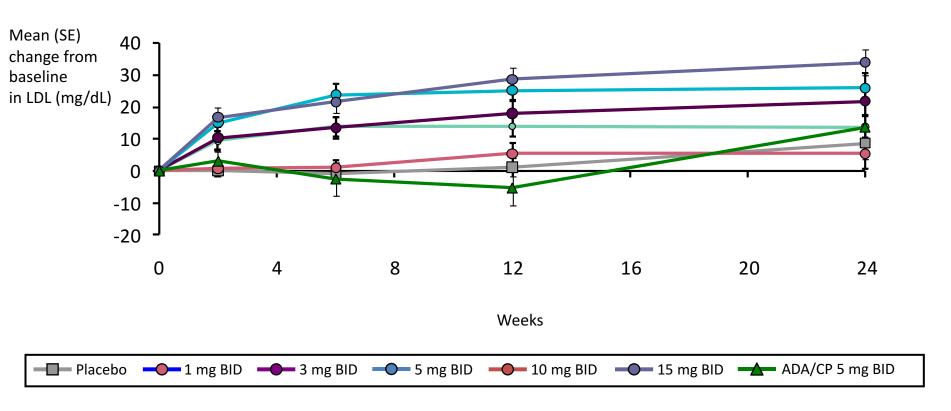


- Reasonably selective for Jaks
- Selectivity amongst Jaks?
  - Limitations of assay
- Cellular selectivity for Jaks: Jak3, Jak1 > Jak2 >> Tyk2
- Relevance to efficacy? Blocks innate and adaptive responses

# Safety and Efficacy After 24-Week Dosing of the Oral JAK Inhibitor CP-690,550 as Monotherapy in Patients with Active Rheumatoid Arthritis

R Fleischmann,<sup>1</sup> MC Genovese,<sup>2</sup> D Gruben,<sup>3</sup> KS Kannik<sup>3</sup> GV Wallenstein,<sup>3</sup> B Wilkinson,<sup>3</sup> SH Zwillich<sup>3</sup>

<sup>1</sup>Metroplex Clinical Research Center, Dallas, TX; <sup>2</sup>Stanford University, Stanford, CA; <sup>3</sup>Pfizer Inc., New London, CT


# Incidence of Transaminase Single and Sustained Elevations Over 24 Weeks

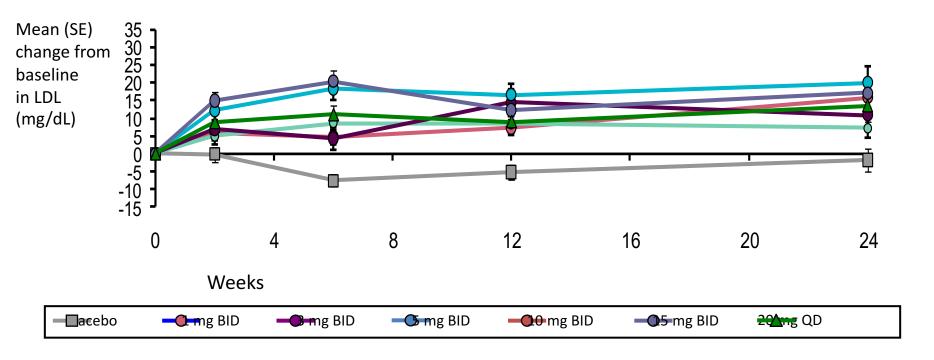
| Dose                              | ALT, n (%)                |            |            |            |                                               |                           | AST, n (%) |            |            |                                               |
|-----------------------------------|---------------------------|------------|------------|------------|-----------------------------------------------|---------------------------|------------|------------|------------|-----------------------------------------------|
|                                   | Normal<br>baseline<br>(n) | >1x<br>ULN | >2x<br>ULN | >3x<br>ULN | >1x ULN<br>sustained<br>until end of<br>study | Normal<br>baseline<br>(n) | >1x<br>ULN | >2x<br>ULN | >3x<br>ULN | >1x ULN<br>sustained<br>until end of<br>study |
| Placebo                           | 54                        | 12 (22)    | 0          | 0          | 1 (4)ª                                        | 54                        | 7 (13)     | 0          | 0          | 1 (4)ª                                        |
| 1 mg BID                          | 50                        | 4 (8)      | 0          | 0          | 1 (3)                                         | 48                        | 4 (8)      | 0          | 0          | 0                                             |
| 3 mg BID                          | 48                        | 9 (19)     | 2 (4)      | 0          | 1 (3)                                         | 49                        | 9 (18)     | 1 (2)      | 1 (2)      | 1 (3)                                         |
| 5 mg BID                          | 48                        | 6 (13)     | 1 (2)      | 0          | 2 (4)                                         | 48                        | 9 (19)     | 1 (2)      | 1 (2)      | 3 (6)                                         |
| 10 mg BID                         | 61                        | 8 (13)     | 1 (2)      | 0          | 1 (2)                                         | 59                        | 13 (22)    | 1 (2)      | 0          | 2 (3)                                         |
| 15 mg BID                         | 55                        | 13 (24)    | 2 (4)      | 2 (4)      | 3 (5)                                         | 56                        | 12 (21)    | 2 (4)      | 2 (4)      | 4 (7)                                         |
| 40 mg ADA<br>QOW / CP<br>5 mg BID | 50                        | 10 (20)    | 3 (6)      | 2 (4)      | 4 (8) <sup>b</sup>                            | 51                        | 10 (20)    | 3 (6)      | 0          | 4 (8) <sup>b</sup>                            |


No patient who experienced AST or ALT > 3x ULN also experienced an increase in total bilirubin >2x ULN or 2mg/dL

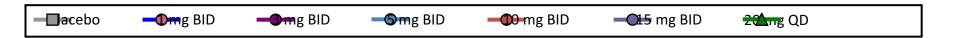
<sup>&</sup>lt;sup>a</sup>Occurrence in 1 patient post-reassignment; <sup>b</sup>occurrence in 1 (ALT)/ 2 (AST) patients post-reassignment. Patients allowed to enroll with AST/ALT ≤2x ULN. Only patients with normal baseline values are included; ALT, alanine aminotransferase; AST, aspartate aminotransferase

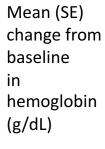
## Change from Baseline in LDL Over 24 Weeks (No Imputation; Observed Values)

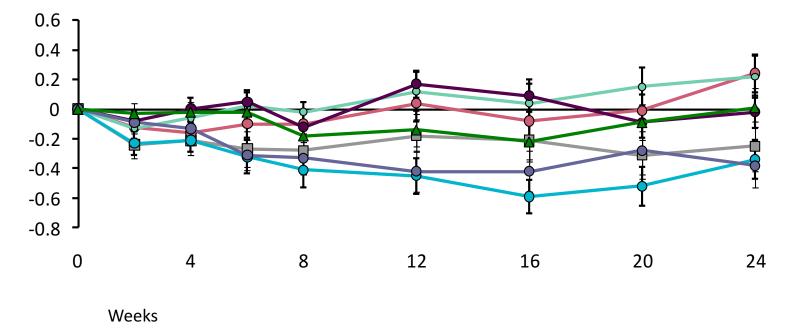



➤ The number of CP-690,550 patients with an LDL <130 mg/dL at baseline that increased to >130 mg/dL during the study were: 5 mg: 14 (29%); 10 mg: 22 (36%); 15 mg: 21 (37%)

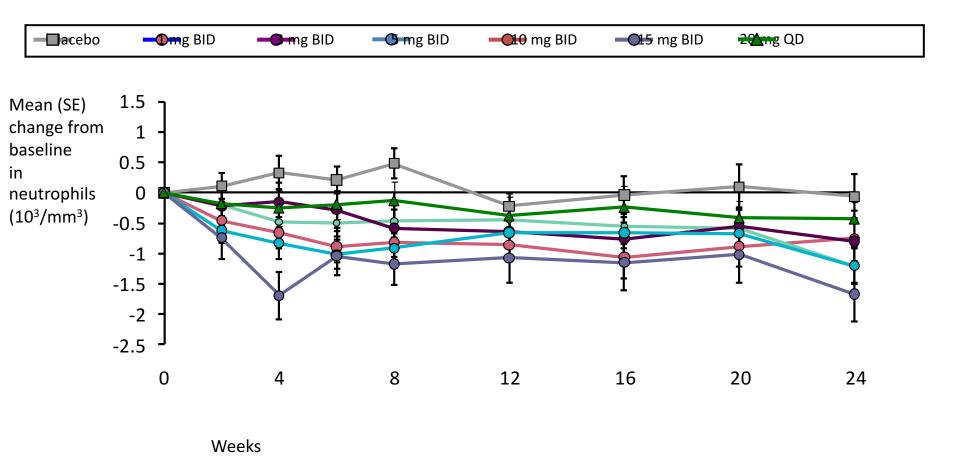



➤ Five patients receiving CP-690,550 and 1 patient receiving placebo had confirmed 50% increase in serum creatinine levels from baseline; none discontinued


#### **Key Laboratory Safety Data**

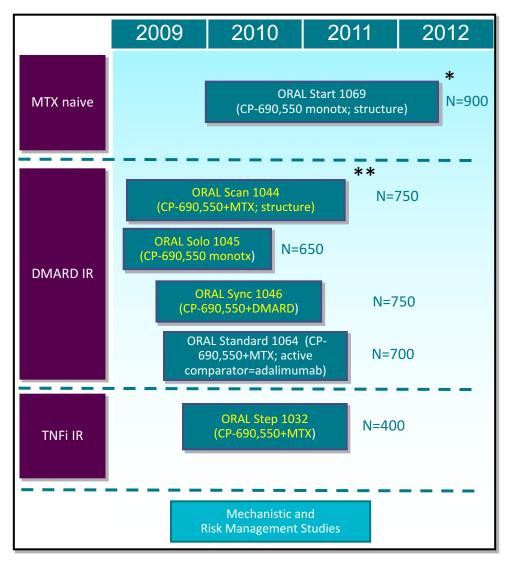

- ➤ Six (2.2%) patients on CP-690,550 experienced confirmed<sup>a</sup> severe anemia (OMERACT<sup>b</sup> criteria)
- ➤ No patients experienced confirmed severe neutropenia (OMERACT criteria)
- ➤ Six patients experienced a confirmed<sup>a</sup> >50% increase in serum creatinine levels from a single baseline measurement: four in the CP-690,550 treatment group and two in the ADA treatment group
  - All resolved either on or post-therapy
  - Of the ADA patients, the increase occurred prior to reassignment to CP-690,550 in one patient; after reassignment in another patient
- ➤ Sixteen patients experienced a confirmed<sup>a</sup> >30% and >0.2 mg/dL increase in serum creatinine levels from a single baseline measurement.




- ➤ The proportion of CP-690,550 patients with a LDL <130 mg/dL at baseline that increased to >130 mg/dL at any time during the study ranged from 32% to 42% for the highest doses
- The increase in LDL and HDL peaked at Week 6, and did not continue to increase for the duration of the study








➤ Thirteen patients on CP-690,550 and 1 patient receiving placebo had confirmed severe anemia (OMERACT criteriab); none discontinued



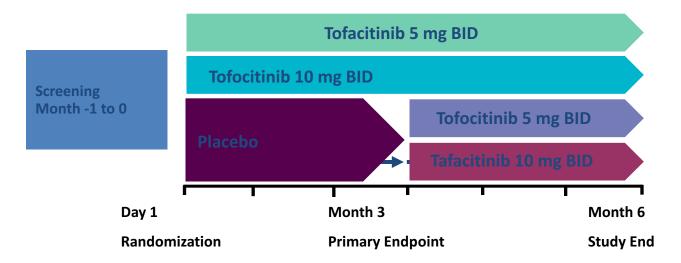
No patients had confirmed severe neutropenia (OMERACT criteria); none discontinued

#### CP-690,550 RA Phase 3 Development Program



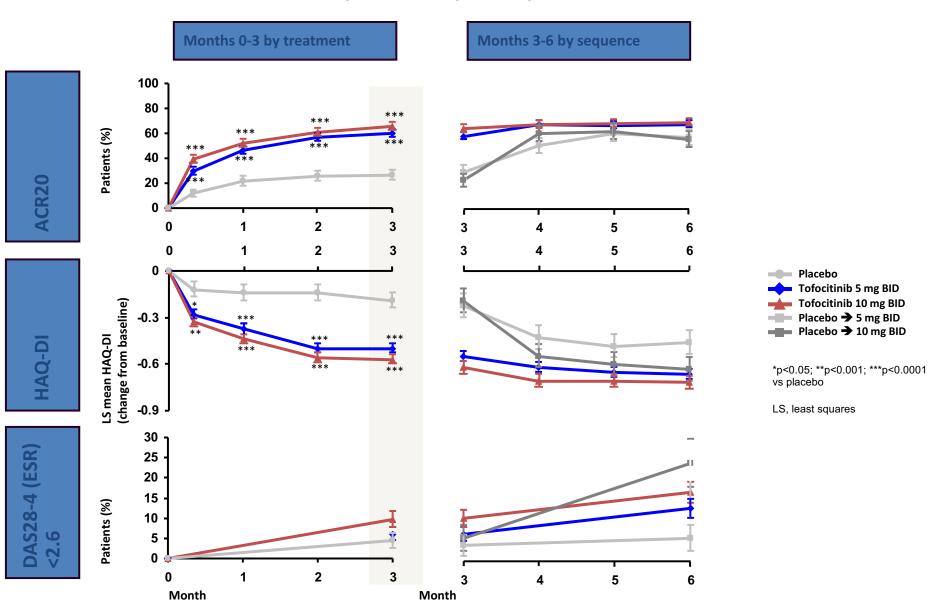
<sup>\*</sup>Interim analysis, study end 2013

<sup>\*\*</sup>Interim analysis, study end 2012

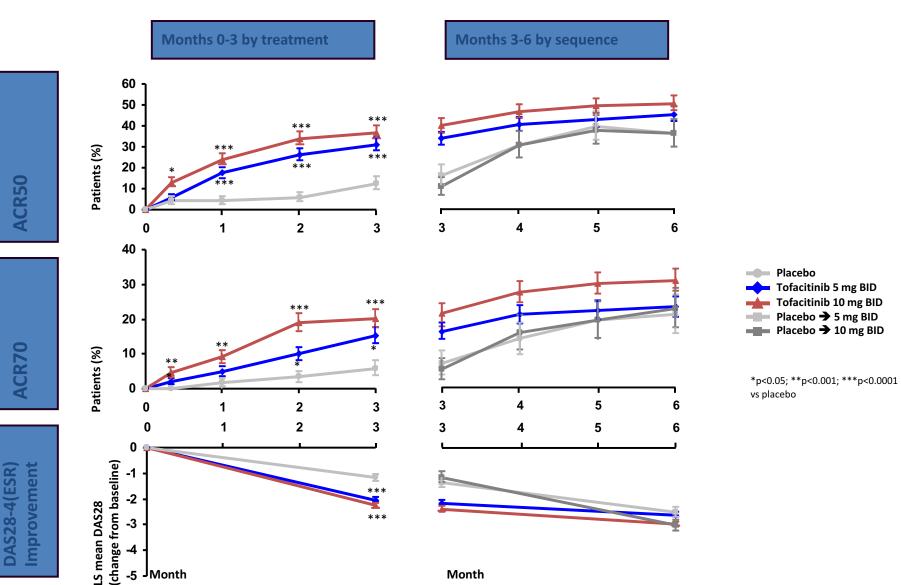

### Phase 3 Study of Oral JAK Inhibitor Tofacitinib (CP-690,550) Monotherapy in Patients with Active Rheumatoid Arthritis

Roy Fleischmann American College of Rheumatology Atlanta, Georgia, November 6-11, 2010

R Fleischmann, J Kremer, J Cush, H Schulze-Koops, CA Connell, J Bradley, D Gruben, G Wallenstein, SH Zwillich, KS Kanik


<sup>1</sup>Metroplex Clinical Research Center, Dallas, TX; <sup>2</sup>Center for Rheumatology, Albany Medical College, Albany, NY; <sup>3</sup>Baylor Research Institute, Dallas, TX; <sup>4</sup>Division of Rheumatology, University of Munich, Munich, Germany; <sup>5</sup>Pfizer Inc., New London, CT, USA

#### Study Design




- > Patients with active RA were randomized 2:2:1 to tasocitinib 5 or 10 mg BID or placebo
- > At Month 3, all placebo patients were blindly advanced to tofacitinib 5 or 10 mg BID
- Primary efficacy endpoint
  - ACR20 responder rate vs placebo at Month 3
  - Change from baseline in the Health Assessment Questionnaire Disability Index (HAQ-DI) at Month 3
  - Rate of patients achieving a DAS28-4(ESR) < 2.6 vs placebo at Month 3</li>
- Key secondary efficacy endpoints
  - ACR 20/50/70 at all visits
  - DAS28-4(ESR) improvement over time

#### **Primary Efficacy Endpoints**



#### **Key Secondary Efficacy Endpoints**



#### **Safety: Laboratory Tests**

|                                                         |              | Month 3 Mor             |                    |               |                |                   |                    |  |
|---------------------------------------------------------|--------------|-------------------------|--------------------|---------------|----------------|-------------------|--------------------|--|
|                                                         | PBO<br>N=122 | 5 mg BID<br>N=243       | 10 mg BID<br>N=245 | PBO→5<br>N=61 | PBO→10<br>N=61 | 5 mg BID<br>N=243 | 10 mg BID<br>N=245 |  |
| LS mean (standard error) change from baseline           |              |                         |                    |               |                |                   |                    |  |
| Neutrophil count, 10 <sup>3</sup> /mm <sup>3</sup>      | -0.06 (0.17) | -0.83 (0.11)†           | -1.35 (0.12)‡      | -0.90 (0.24)  | -1.18 (0.26)   | -0.78 (0.12)      | -1.15 (0.12)       |  |
| Hemoglobin, g/dL                                        | -0.12 (0.76) | 0.28 (0.88)             | 0.03 (0.97)        | 0.21 (0.97)   | -0.22 (1.05)   | 0.25 (0.96)       | 0.15 (0.94)        |  |
| % LDL, mg/dL                                            | 3.5 (2.3)    | 13.6 (1.6) <sup>†</sup> | 19.1 (1.6)‡        | 16.9 (3.3)    | 16.8 (3.4)     | 12.8 (1.6)        | 19.1 (1.7)         |  |
| % HDL, mg/dL                                            | -0.8 (1.9)   | 12.2 (1.3)‡             | 15.0 (1.3)‡        | 11.3 (2.8)    | 11.0 (2.9)     | 10.4 (1.4)        | 16.6 (1.4)         |  |
| Serum creatinine, mg/dL                                 | 0 (0.02)     | 0.04 (0.01)             | 0.05 (0.01)        | 0.06 (0.03)   | 0.08 (0.03)    | 0.06 (0.01)       | 0.08 (0.01)        |  |
|                                                         |              |                         |                    |               |                |                   |                    |  |
| Incidence, n (%) <sup>a</sup>                           | N=103        | N=223                   | N=216              | N=53          | N=50           | N=224             | N=210              |  |
| Neutropenia                                             | 1 (<1.0)     | 10 (4.5)                | 10 (4.6)           | 3 (5.7)       | 0              | 6 (2.7)           | 10 (4.8)           |  |
| Decreased hemoglobin                                    | 15 (14.6)    | 13 (5.8)                | 31 (14.4)          | 5 (9.4)       | 6 (12.0)       | 18 (8.0)          | 22 (10.5)          |  |
|                                                         |              | •                       |                    |               |                |                   | •                  |  |
| Incidence of > ULN, n (%) <sup>a</sup>                  | N=122        | N=243                   | N=245              | N=57          | N=52           | N=239             | N=232              |  |
| AST>1x ULN                                              | 7 (5.8)      | 23 (9.5)                | 29 (11.8)          | 6 (10.5)      | 6 (11.5)       | 28 (11.7)         | 28 (12.1)          |  |
| AST>3x ULN                                              | 1 (0.8)      | 4 (1.7)                 | 0                  | 1 (1.8)       | 0              | 2 (0.8)           | 0                  |  |
| ALT>1x ULN                                              | 11 (9.1)     | 23 (9.5)                | 28 (11.4)          | 12 (21.1)     | 7 (13.5)       | 31 (13.0)         | 24 (10.3)          |  |
| ALT>3x ULN  allowing Months 0-3 and 3-6; *p<0.001; *p<0 | 1 (0.8)      | 1 (0.4)                 | 0                  | 1 (1.75)      | 0              | 2 (0.84)          | 2 (0.86)           |  |

HDL, high-density lipoprotein; LDL, low-density lipoprotein; ULN, upper limit of normal

Tofacitinib (CP-690,550) an Oral JAK Inhibitor, in Combination with Traditional DMARDs: Phase 3 Study in Patients with Active Rheumatoid Arthritis with Inadequate Response to DMARDs

Joel M Kremer, MD

Pfaff Family Professor of Medicine,
Albany Medical College,
Director of Research,
The Center for Rheumatology

#### **ORAL Sync: Safety - Adverse Events**

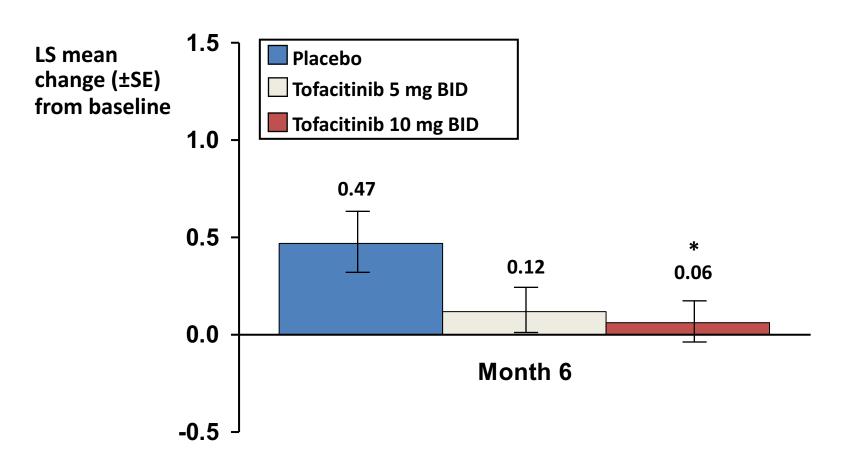
|                       | Months 0-3           |                       |              |              | Mo                   | Months 3-6            |                   |                    | Post Month 6         |                       |                   |                    |
|-----------------------|----------------------|-----------------------|--------------|--------------|----------------------|-----------------------|-------------------|--------------------|----------------------|-----------------------|-------------------|--------------------|
|                       | 5 mg<br>BID<br>n=315 | 10 mg<br>BID<br>n=318 | PBO<br>n=159 | PBO<br>n=81  | 5 mg<br>BID<br>n=315 | 10 mg<br>BID<br>n=318 | PBO<br>→5<br>n=38 | PBO<br>→10<br>n=40 | 5 mg<br>BID<br>n=315 | 10 mg<br>BID<br>n=318 | PBO<br>→5<br>n=79 | PBO<br>→10<br>n=80 |
| AE, n (%)             | 166<br>(52.7)        | 173<br>(54.4)         | 97<br>(61.0) | 21<br>(25.9) | 121<br>(38.4)        | 124<br>(39.0)         | 16<br>(42.1)      | 18<br>(45.0)       | 104<br>(33.0)        | 135<br>(42.5)         | 34<br>(43.0)      | 29<br>(36.3)       |
| Serious AE<br>n (%)   | 9 (2.9)              | 8<br>(2.5)            | 6<br>(3.8)   | 0            | 5<br>(1.6)           | 7<br>(2.2)            | 0                 | 0                  | 7<br>(2.2)           | 9 (2.8)               | 2<br>(2.5)        | 0                  |
| Severe AE<br>n (%)    | 10<br>(3.2)          | 11<br>(3.5)           | 6<br>(3.8)   | 1<br>(1.2)   | 7<br>(2.2)           | 6<br>(1.9)            | 0                 | 0                  | 8<br>(2.5)           | 7<br>(2.2)            | 1<br>(1.3)        | 0                  |
| Serious IE<br>n (%)   | 2 (0.6)              | 4<br>(1.2)            | 0            | 0            | 0                    | 0                     | 1 (0.3)           | 1 (0.3)            | 3<br>(1.0)           | 8<br>(2.5)            | 0                 | 0                  |
| D/Cs due to AEs n (%) | 13<br>(4.1)          | 13<br>(4.1)           | 2<br>(1.3)   | 1<br>(1.2)   | 6<br>(1.9)           | 8<br>(2.5)            | 0                 | 1<br>(2.5)         | 1<br>(0.3)           | 9<br>(2.8)            | 0                 | 1<br>(1.3)         |

|               | 5 mg BID | 10 mg BID | PBO→5 mg<br>BID | PBO→10 mg<br>BID |
|---------------|----------|-----------|-----------------|------------------|
| Deaths, n (%) | 2 (0.6)  | 2 (0.6)   | 0               | 0                |

#### **ORAL Sync: Safety - Lab Tests**

|                      | Month 3 Months 3-6 |                      |                       |                      |                       | Post Month 6 |                   |                    |                      |                       |                    |                    |
|----------------------|--------------------|----------------------|-----------------------|----------------------|-----------------------|--------------|-------------------|--------------------|----------------------|-----------------------|--------------------|--------------------|
| Patients             | PBO<br>n=159       | 5 mg<br>BID<br>n=315 | 10 mg<br>BID<br>n=313 | 5 mg<br>BID<br>n=292 | 10 mg<br>BID<br>n=297 | PBO<br>n=71  | PBO<br>→5<br>n=38 | PBO<br>→10<br>n=40 | 5 mg<br>BID<br>n=272 | 10 mg<br>BID<br>n=270 | PBO<br>→5<br>n= 72 | PBO<br>→10<br>n=69 |
| AST>1x ULN, n<br>(%) | 22<br>(13.8)       | 74<br>(23.5)         | 92<br>(29.4)          | 52<br>(17.8)         | 63<br>(21.2)          | 9 (12.7)     | 4<br>(10.5)       | 9 (22.5)           | 52<br>(19.1%)        | <b>72</b> (26.7%)     | 14<br>(19.4%)      | <b>17</b> (24.6%)  |
| AST>3x ULN, n<br>(%) | 1 (<1.0)           | 3<br>(<1.0)          | 1<br>(<1.0)           | 1 (<1.0)             | 0                     | 0            | 0                 | 0                  | 3<br>(1.1%)          | 1<br>(<1.0)           | 0                  | 1<br>(1.4%)        |
| ALT>1x ULN, n<br>(%) | 28<br>(17.6)       | 88<br>(27.9)         | 107<br>(34.2)         | 57<br>(19.5)         | 70<br>(23.6)          | 13<br>(18.3) | 5<br>(13.2)       | 4 (10.0)           | 51<br>(18.8%)        | <b>74</b> (27.4%)     | 16<br>(22.2%)      | 16<br>(23.2%)      |
| ALT>3x ULN, n<br>(%) | 1 (<1.0)           | 6<br>(1.9)           | 3<br>(<1.0)           | 3<br>(1.0)           | 3<br>(1.0)            | 1<br>(1.4)   | 0                 | 1<br>(2.5)         | 7<br>(2.6%)          | 5<br>(1.9%)           | 0                  | 1<br>(1.4%)        |

Tofacitinib (CP-690,550), an Oral Janus Kinase Inhibitor, in Combination with Methotrexate Reduced the Progression of Structural Damage in Patients with Rheumatoid Arthritis: a 24-month Phase 3 Study


Désirée van der Heijde

Presentation Number: 2592

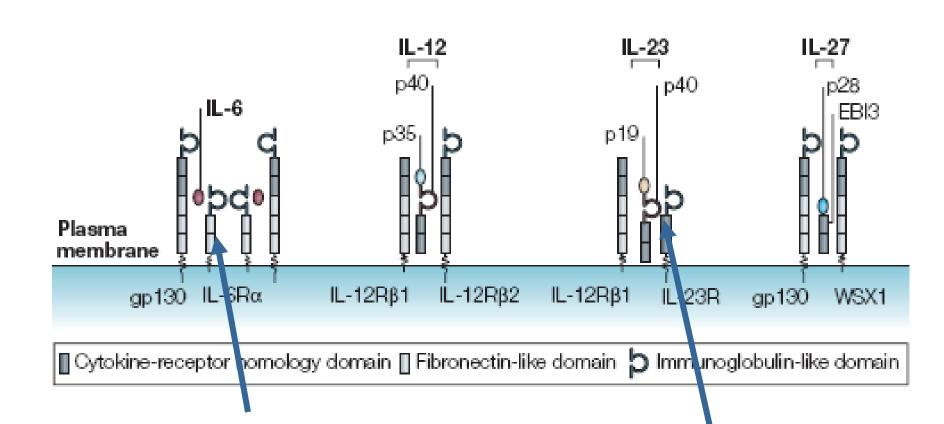
D van der Heijde,<sup>1</sup> Y Tanaka,<sup>2</sup> R Fleischmann,<sup>3</sup> E Keystone,<sup>4</sup> J Kremer,<sup>5</sup> C Zerbini,<sup>6</sup> M Cardiel,<sup>7</sup> S Cohen,<sup>3</sup> P Nash,<sup>8</sup> Y Song,<sup>9</sup> D Tegzova,<sup>10</sup> B Wyman,<sup>11</sup> D Gruben,<sup>11</sup> B Benda,<sup>12</sup> S Krishnaswami,<sup>11</sup> G Wallenstein,<sup>11</sup> SH Zwillich,<sup>11</sup> J Bradley,<sup>11</sup> C Connell<sup>11</sup>

<sup>1</sup>Leiden University Medical Center, Leiden, The Netherlands; <sup>2</sup>University of Occupational and Environmental Health, Kitakyushu, Japan; <sup>3</sup>Metroplex Clinical Research Center, Dallas, TX, USA; <sup>4</sup>University of Toronto, Toronto, Canada; <sup>5</sup>Albany Medical College, Albany, NY, USA; <sup>6</sup>Centro Paulista de Investigação Clinica, São Paulo, Brazil; <sup>7</sup>Centro de Investigacion Clinica de Morelia, Mexico; <sup>8</sup>Nambour Hospital, Sunshine Coast; and University of Queensland, Queensland, Australia; <sup>9</sup>Seoul National University Hospital, Seoul, Korea; <sup>10</sup>Institute of Rheumatology, Prague, Czech Republic; <sup>11</sup>Pfizer Inc., Groton, CT, USA; <sup>12</sup>Pfizer Inc., Collegeville, PA, USA

#### ORAL Scan: mTSS (Primary Endpoint)



<sup>\*</sup>p≤0.05<sub>0</sub>vs placebo; LS, least squares


#### Tofacitinib, Phase III

- Consistent efficacy in all trials at 5 and 10 mg BID
- Radiographic Inhibition
- Consistent side effect profile:

Infections, rare opportunistic infections,

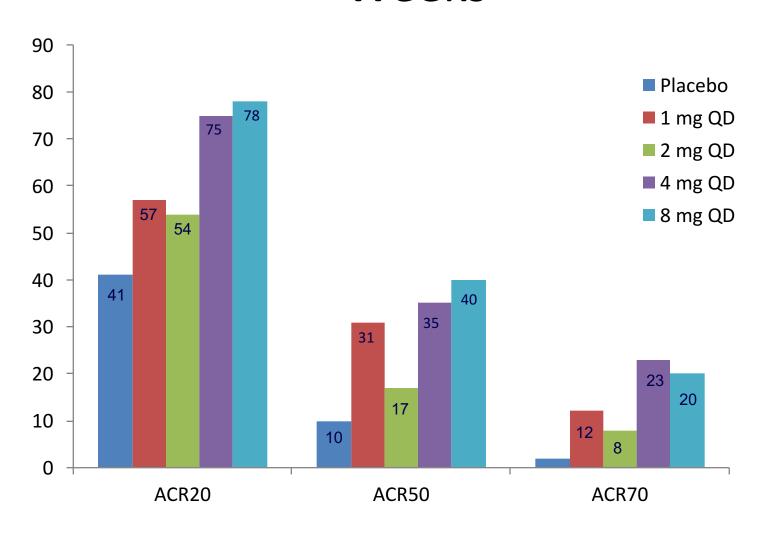
anemia, transaminitis, lipid effects, occasional neutropenia & increased Cr

## Cytokine Targets in Inflammation Which Signal Through JAK1 and JAK2

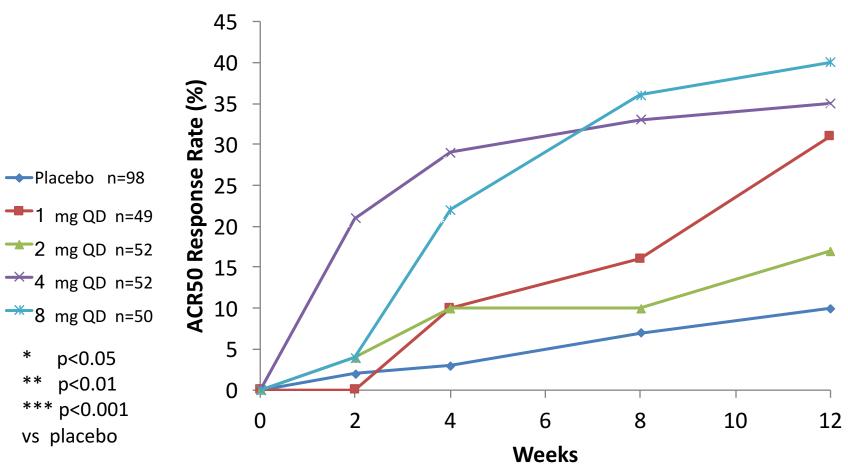


**Tocilizumab**Rheumatoid Arthritis

Ustekinumab Psoriasis


#### **Baricitinib:** Potent Selective JAK1/JAK2 Inhibitor

- Nanomolar inhibitor of JAK1 and JAK2
- Minimal effect against JAK3 and non-JAK family kinases\*
- Potent inhibitor of IL-6 and IL-23 signaling, validated cytokine targets in inflammatory diseases


|                     | Assay                           | IC <sub>50</sub><br>(nM) |
|---------------------|---------------------------------|--------------------------|
|                     | JAK1                            | 6                        |
| Enzyme<br>Potency   | JAK2                            | 6                        |
| (1 mM<br>ATP)       | JAK3                            | >400                     |
| All )               | Tyk2                            | 53                       |
| Cellular<br>Potency | IL-6<br>stimulated<br>monocytes | 70                       |
|                     | IL-23<br>stimulated<br>T-cells  | 20                       |

<sup>\*</sup>INCB28050 was evaluated against a panel of 28 non-JAK kinases and demonstrated no significant inhibition at a concentration > 100x its potency against JAK1/2

# Baricitinib ACR Responses by Dose at 12 Weeks

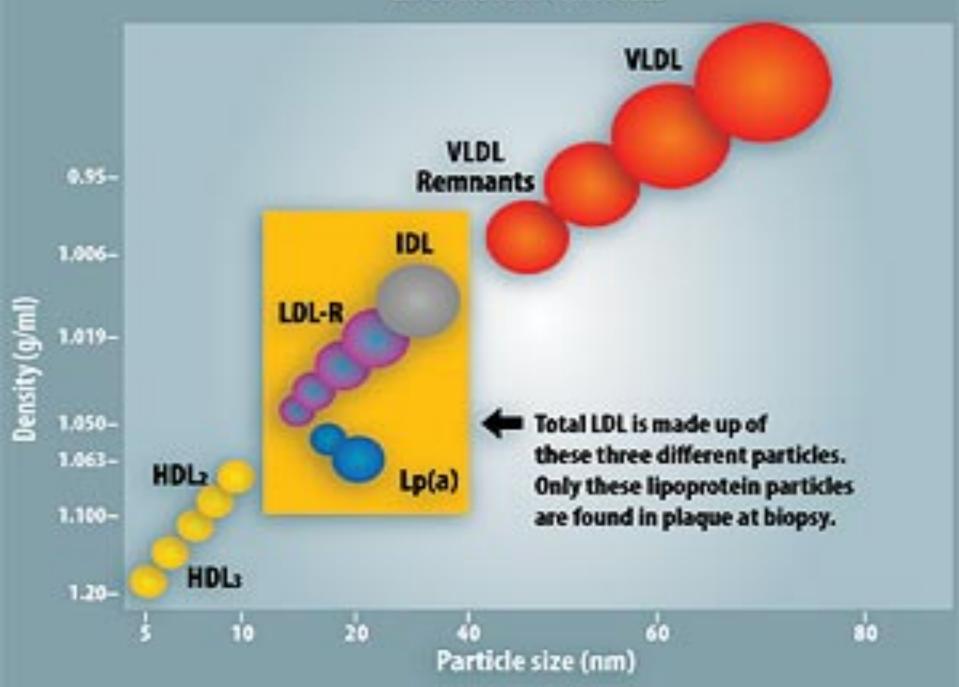


#### ACR50 Response Rate Over Time (NRI)

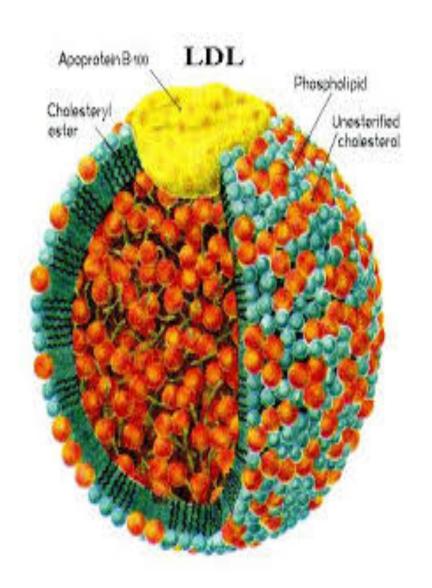


NRI = Non-responder Imputation

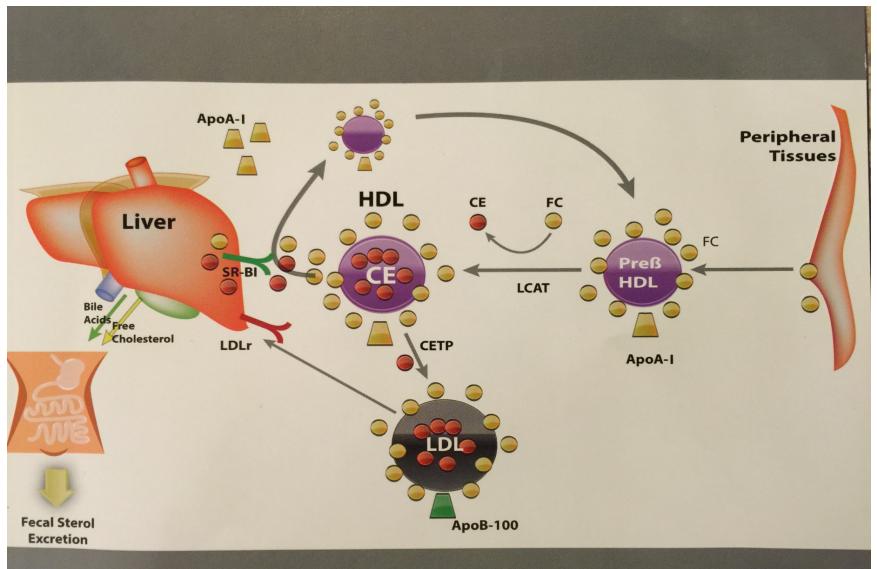
#### Change in Hemoglobin over 12 Weeks


|                                             | Placebo<br>(N=98)                                                                   | 1 mg<br>(N=49) | 2 mg<br>(N=52) | 4 mg<br>(N=52) | 8 mg<br>(N=50) |  |  |  |
|---------------------------------------------|-------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|--|--|--|
| Mean Change from Baseline to Week 12 (g/dL) |                                                                                     |                |                |                |                |  |  |  |
|                                             | -0.14                                                                               | 0.09           | -0.09          | -0.15          | -0.57          |  |  |  |
| Maximum Decre                               | ase Post-baseli                                                                     | ne [g/dL; n (  | %)]            |                |                |  |  |  |
| Decrease<br>≥ 1.0 – < 1.5                   | 16 (16%)                                                                            | 7 (15%)        | 10 (19%)       | 15 (29%)       | 15 (31%)       |  |  |  |
| Decrease<br>≥ 1.5 – < 3.0                   | 6 (6%)                                                                              | 1 (2%)         | 4 (8%)         | 4 (8%)         | 13 (26%)       |  |  |  |
|                                             | Decrease                                                                            | es ≥ 3 g/dL o  | r values < 8.0 | g/dL not obs   | erved.         |  |  |  |
|                                             |                                                                                     |                |                |                |                |  |  |  |
| Shift from ≥LLN a                           | Shift from ≥LLN at baseline to <lln (%)]<="" 12="" [n="" at="" td="" week=""></lln> |                |                |                |                |  |  |  |
|                                             | 5 (7%)                                                                              | 3 (9%)         | 3 (7%)         | 2 (5%)         | 11 (27%)       |  |  |  |

#### Change in Renal Parameters over 12


|                     |                   | Weel           | <b>&lt;</b> S  |                |                |
|---------------------|-------------------|----------------|----------------|----------------|----------------|
|                     | Placebo<br>(N=98) | 1 mg<br>(N=49) | 2 mg<br>(N=52) | 4 mg<br>(N=52) | 8 mg<br>(N=50) |
| Mean Change fro     | m Baseline to     | Week 12 (mg    | g/dL)          |                |                |
| Creatinine          | 0.01              | 0.02           | 0.04           | 0.11           | 0.09           |
| Cystatin C          | 0.01              | -0.01          | -0.02          | -0.05          | 0.00           |
|                     |                   |                |                |                |                |
| Maximum Increas     | se in Creatinin   | e Post-baselir | ne [mg/dL; n   | (%)]           |                |
| ≥ 0.11 - < 0.23     | 23 (23%)          | 12 (24%)       | 15 (29%)       | 12 (24%)       | 18 (36%)       |
| ≥ 0.23 - < 0.45     | 4 (4%)            | 3 (6%)         | 7 (13%)        | 7 (14%)        | 5 (10%)        |
| ≥ 0.45              | 1 (1%)            | 0              | 1 (2%)         | 2 (4%)         | 2 (4%)         |
|                     |                   |                |                |                |                |
| Creatinine Shift fr | rom ≤ ULN* at     | baseline to >  | ULN at Weel    | k 12 [n (%)]   |                |
|                     | 1 (1%)            | 2 (5%)         | 1 (2%)         | 2 (4%)         | 1 (2%)         |

<sup>\*</sup> Creatinine ULN was 1.20 mg/dL for females and 1.30 mg/dL for males


#### LIPOPROTEIN PARTICLES



#### LDL



#### Charles-Schoeman C,2015 A&R;67:616-625



## **Baricitinib Treatment are Associated with Favorable Changes** in Apolipoprotein Content and with Improvement in DAS28-CRP in Patients with **Rheumatoid Arthritis**

Joel Kremer<sup>1</sup>, Mark C. Genovese<sup>2</sup>, Edward Keystone<sup>3</sup>, Peter Taylor<sup>4</sup>, Steven H. Zuckerman<sup>5</sup>, Douglas E. Schlichting<sup>5</sup>, Eric Nantz<sup>5</sup>, Scott D. Beattie<sup>5</sup>, William L. Macias<sup>5</sup>

# Apolipoprotein Changes with Baricitinib

|                                                   | Placebo (N=96) | 4 mg QD (N=52)  | 8 mg QD (N=50)   |
|---------------------------------------------------|----------------|-----------------|------------------|
| Apolipoprotein B (mg/dL)                          |                |                 |                  |
| Baseline                                          | $105 \pm 3.0$  | 110.5 ± 6.5     | 100 ± 6.5        |
| Percent change from baseline at Week 4            | -4.5 ± 2.6†    | $3.6 \pm 2.4^*$ | $0.85 \pm 3.0^*$ |
| Percent change from baseline at Week 12           | -4.5 ± 0.9†    | 6.8 ± 3.6*      | 7.1 ± 3.8*       |
| Apolipoprotein A-I (mg/dL)                        |                |                 |                  |
| Baseline                                          | 184.0 ± 5.5    | 188.0 ± 10.0    | 178.5 ± 8.5      |
| Percent change from baseline at Week 4            | -1.9 ± 3.0     | 5.1 ± 4.1†,*    | 11.6 ± 3.9††,**  |
| Percent change from baseline at Week 12           | 1.1 ± 2.5      | 9.5 ± 3.8†,*    | 12.2 ± 3.0††,*   |
| Apolipoprotein B/Apolipoprotein A-I Ratio (mg/dL) |                |                 |                  |
| Baseline                                          | $0.6 \pm 0.03$ | $0.6 \pm 0.03$  | 0.6 ±0.03        |
| Percent change from baseline at Week 4            | -3.4 ± 2.5†    | $-2.7 \pm 3.0$  | $-9.8 \pm 5.3^*$ |
| Percent change from baseline at Week 12           | -6.6 ± 2.7†    | -5.3 ± 2.7      | $-4.9 \pm 6.2$   |
| Apolipoprotein CIII (mg/dL)                       |                |                 |                  |
| Baseline                                          | $8.3 \pm 0.4$  | $7.6 \pm 0.6$   | $7.4 \pm 0.6$    |
| Percent change from baseline at Week 4            | $-4.2 \pm 4.3$ | 17.0 ± 13.0     | 22.3 ± 10.5††,*  |
| Percent change from baseline at Week 12           | $-8.9 \pm 4.3$ | 23.0 ± 6.9†,*   | 19.7 ± 3.8††,**  |
| LDL Associated Apolipoprotein CIII (mg/dL)        |                |                 |                  |
| Baseline                                          | 1.1 ± 0.1      | 1.2 ± 0.2       | 1.2 ± 0.1        |
| Percent change from baseline at Week 4            | -20.8 ± 14.8   | -4.7 ± 18.7     | -1.3 ± 18.1      |
| Percent change from baseline at Week 12           | $0 \pm 8.3$    | -4.5 ± 10.8     | -9.0 ± 18.9      |

#### HDL and Lipoprotein(a)

|                                         |                | Dane             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|-----------------------------------------|----------------|------------------|-----------------------------------------|
|                                         | Placebo (N=96) | 4 mg QD (N=52)   | 8 mg QD (N=50)                          |
| HDL Associated Serum Amyloid A (mg/L)   |                |                  |                                         |
| Baseline                                | $5.7 \pm 0.6$  | $6.4 \pm 0.9$    | 11.1 ± 3.5                              |
| Percent change from baseline at Week 4  | 12.0 ± 14.3    | -51.3 ± 5.3††,** | -50.2 ± 7.5†,**                         |
| Percent change from baseline at Week 12 | 11.3 ± 6.5     | -36.0 ± 3.5†,*   | -32.0 ± 16.1†,*                         |
| Lipoprotein (a) (mg/dL)                 |                |                  |                                         |
| Baseline                                | 8.4 ± 1.5      | 10.7 ± 3.0       | 11.1 ± 2.3                              |
| Percent change from baseline at Week 4  | $0.7 \pm 5.4$  | $2.5 \pm 7.4$    | -8.1 ± 6.5†,*                           |
| Percent change from baseline at Week 12 | $-2.4 \pm 3.9$ | $-4.6 \pm 4.5$   | -16.6 ± 2.6†                            |

Data are median ± SE due to skewed distribution.

 $^{\dagger}p$ <0.05 (within treatment),  $^{\dagger}p$ <0.001 (within treatment),  $^{\ast}p$ <0.05 vs. placebo,  $^{**}p$ <0.001 vs. placebo Abbreviations: HDL=high density lipoprotein; LDL=low density lipoprotein; SE=standard error

#### JAK Inhibition in RA, Summary

There are <u>multiple</u> possible approaches which affect different JAK targets.

All Jakinhibs have some associated toxicity. I don't worry about Lipids, Or Transaminases (adjust dose).

Must watch for zoster (higher in Jaks) and other infections, just as in all of the biologics.