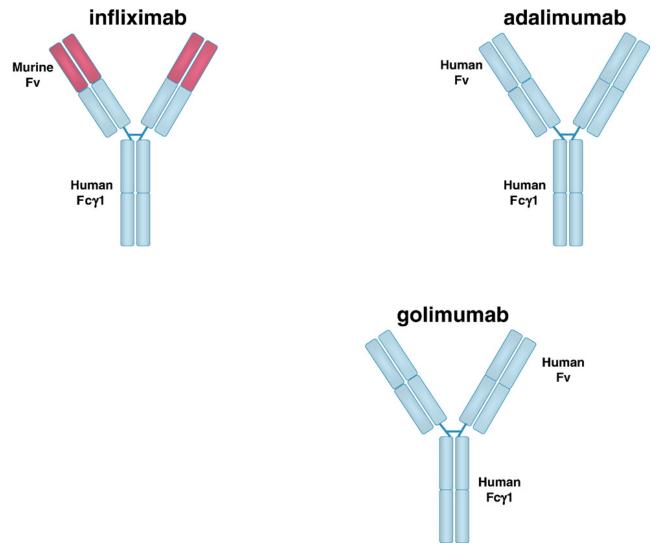
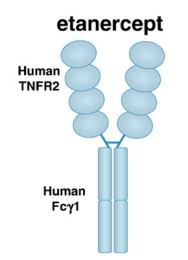
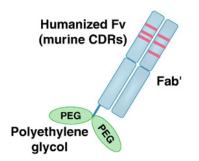
Anti-TNF: similarities and differences

Dr Monica Todoerti MD, PhD Division of Rheumatology University of Pavia San Matteo Foundation




- Structure
- Immunogenicity
 - MoA
- Clinical indications
 - Safety
- Specific clinical settings
 - Final considerations

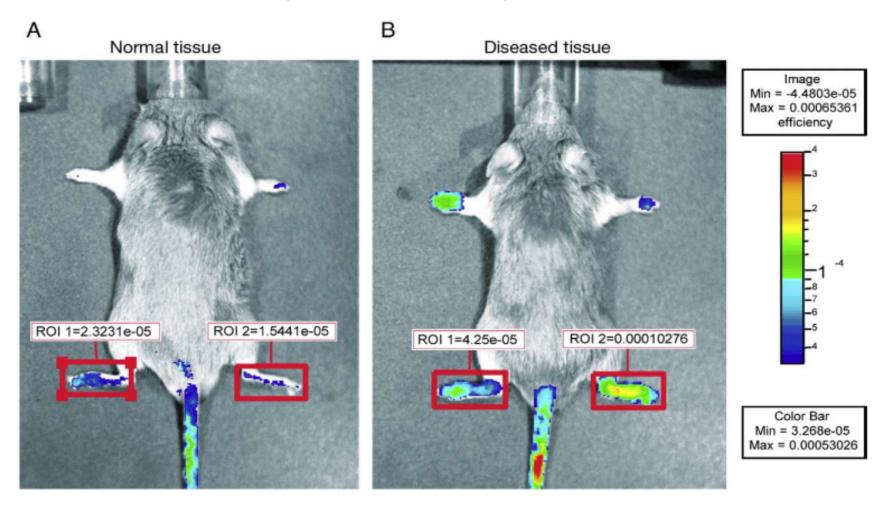
Structure


Pharmacology & Therapeutics 117 (2008) 244-279

certolizumab pegol

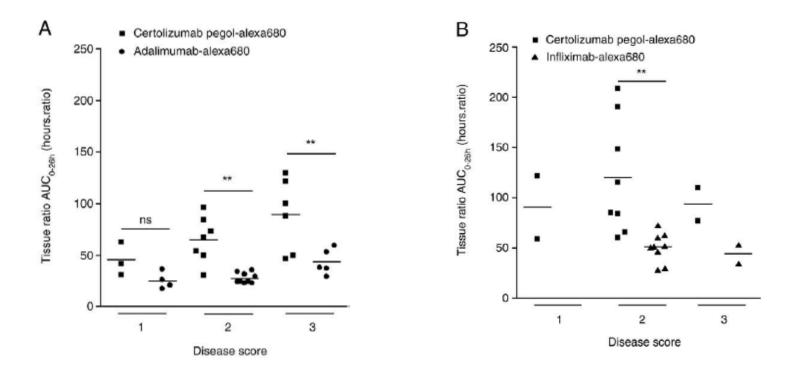
Pharmacology & Therapeutics 117 (2008) 244-279

BioDrugs (2014) 28 (Suppl 1):S15-S23


Properties	Effect of Pegylation
Solubility	+
Aggregation	-
Bioavailability	+
Resistance to proteolysis	+
Localisation at disease sites	+
Immunogenicity	-
Circulating half-life	+

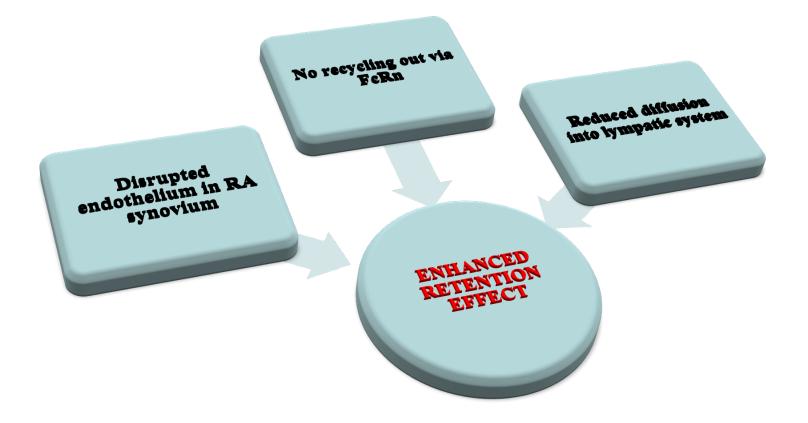
BioDrugs (2014) 28 (Suppl 1):S15-S23

Properties	Effect of Pegylation
Solubility	+
Aggregation	-
Bioavailability	+
Resistance to proteolysis	+
Localisation at disease sites	+
Immunogenicty	-
Circulating half-life	+


Use of biofluorescence imaging to compare the distribution of certolizumab pegol, adalimumab, and infliximab in the inflamed paws of mice with collagen-induced arthritis

AIM: to determine drug (TNFi) distribution through in vivo-murin model of collagen induced arthritis using a biofluorescence method.

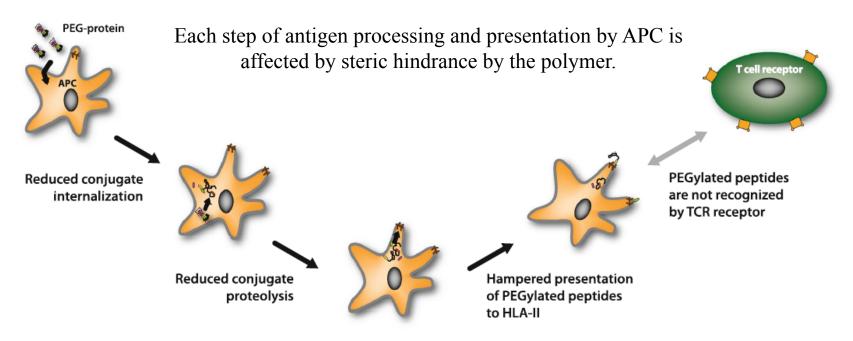
Use of biofluorescence imaging to compare the distribution of certolizumab pegol, adalimumab, and infliximab in the inflamed paws of mice with collagen-induced arthritis


Relationship between disease severity score and TNFi accumulation

<u>RESULT 3</u>: the degree of CZP penetration in inflamed tissues better agrees with the level of inflammation

Use of biofluorescence imaging to compare the distribution of certolizumab pegol, adalimumab, and infliximab in the inflamed paws of mice with collagen-induced arthritis

Thanks to Pegylation

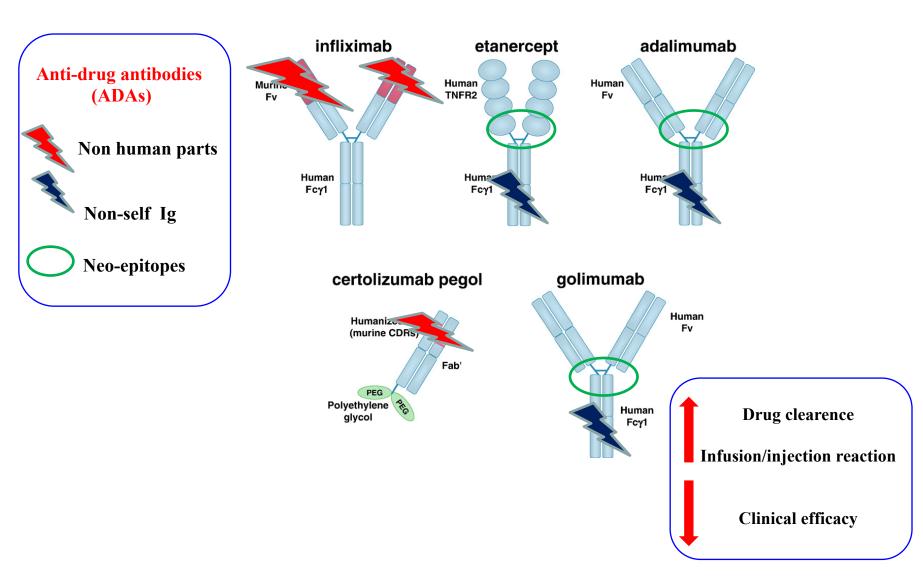


BioDrugs (2014) 28 (Suppl 1):S15-S23

Properties	Effect of Pegylation
Solubility	+
Aggregation	-
Bioavailability	+
Resistance to proteolysis	+
Localisation at disease sites	+
Immunogenicity	-
Circulating half-life	+

BioDrugs (2014) 28 (Suppl 1):S15-S23

PEGylation leads to reduced immunogenicity, as consequence of the decreased recognition of PEGylated proteins by the immune system.



BioDrugs (2014) 28 (Suppl 1):S15-S23

• PEG is approved by the US FDA as a safe constituent of various medications for internal or external use.

• There are minimal safety concerns regarding the linking of PEG to a biological molecule or protein.

Immunogenicity

Immunogenicity

Variability in ANTI-DRUG ANTIBODIES (ADAs):

- intrinsic immunogenicity of the drug (CZP!)

- individual patients' factors

- concomitant immunosuppression

- assay tests (false + related to RF+)

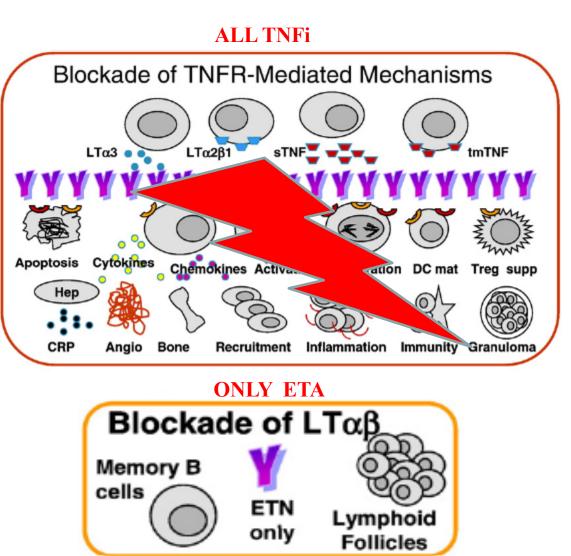
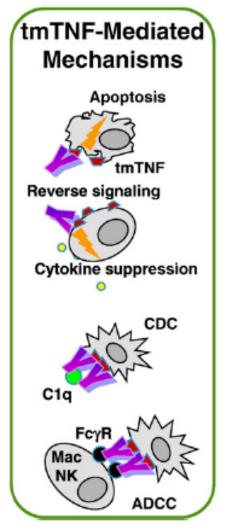

Immunogenicity

Table 2. Effect of Concomitant Use of Immunomodulators on the Pharmacokinetics and Immunogenicity of Anti-TNF α Biologic Therapies in Patients with Rheumatoid Arthritis or Crohn's Disease


					IMM on ncidence	
	Disease population	IMM use	Effect on PK	IM-	IM+	References
Adalimumab	RA	MTX	MTX reduced the apparent CL of	12%	1%	13, 45
			adalimumab in patients with RA after single and repeated dosing by 29% and 44%, respectively.	38%	12%	
	CD	AZA, 6-MP and MTX	Concurrent immunosuppressant therapy did not appear to affect the apparent CL of adalimumab in patients with CD.	4%	0%	24, 91
Certolizumab pegol	RA	МТХ	MTX did not appear to have an effect on the apparent CL of certolizumab in patients with RA.	8%	2%	42
	CD	AZA, 6-MP and MTX	Concurrent immunosuppressant therapy had a small effect on the CL of certolizumab in patients with CD.	11%	3%	42
Etanercept	RA	MTX	MTX did not affect the apparent CL of etanercept in patients with RA.	3%	<2%	21, 43, 92, 93
Golimumab	RA	МТХ	MTX reduced the apparent CL of golimumab by 36% after 6-month treatment in patients with BA	7%	2%	18, 41
Infliximab	RA	MTX	MTX decreased infliximab CL by 30% in patients with RA.	7–53%	0-15%	40, 94
	CD	AZA, 6-MP and MTX	Concurrent IMM use was associated with	11%	7%	26, 27, 95
			a 14% decrease in infliximab CL	15%	1%	

MAINLY mABs (< ETA)

Summary of in vitro properties of TNFi

DRUG	INDUCTION OF APOPTOSIS	INDUCTION OF CDC/ADCC	NEUTROPHIL DEATH/ DEGRANULATION	CYTOKINE SUPPRESSION
СZР	-	-	-	+
ЕТА	+/-	+/-	+/-	+
ADA	+	+	+	+
IFX	+	+	+	+
GOL	+	+	+	+

BioDrugs (2014) 28 (Suppl 1):S5-S13

Pharmacokinetics

	Administration route	Dosage	Half-life	Volume of distribution
ETANERCEPT	SC	25 mg BWK 50 mg BWK	4 days	8 L
ADALIMUMAB	SC	40 mg EOW	10/20 days	4,7-6 L
INFLIXIMAB	IV	3/10 mg/Kg 4-8 weeks	8/10 days	4,3+/2,5 L
GOLIMUMAB	SC	50/100 mg q4w	7/20 days	6,9 L
CZP	SC	200/400 mg Q2w or 4qw	14 days	8 L

Pharmacology & Therapeutics 117 (2008) 244-279

Clinical indications

	RA	PsA	AS	nr- axial SpA	Enteso- arthritis	CD	UC	Uveitis	Hidrosadenitis suppurativa
ETA	+	+	÷	+	-	-	-	-	-
ADA	+	+	+	+	+	+	+	+	+
IFX	+	+	+	-	-	+	+	-	-
GOL	+	Ŧ	+	+	-	-	+	-	-
CZP	+	+	+	+	-	-	-	-	-

Clinical indications

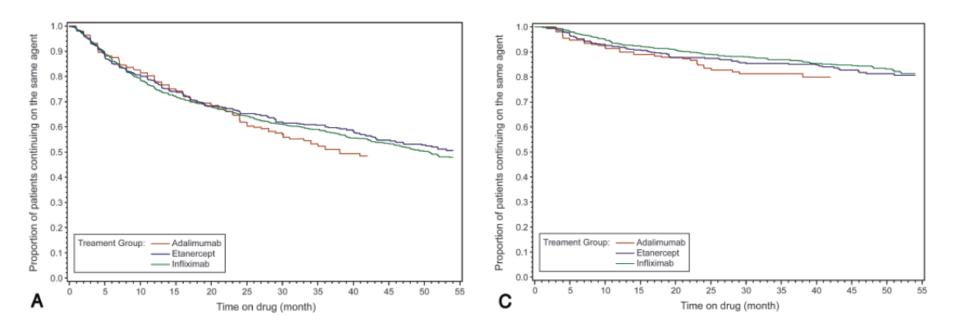
	RA	MTX required (label indication)	MTX naive	MTX experienced	TNF IR
ЕТА	+	+/	+	+	+
ADA	+	+/	+	+	+
IFX	+	+	+	+	+
GOL	+	+	+	+	+
CZP	+	+/	+	+	+

TNFis in early naive RA

Study, year	Drug	Population	Endopoints	Results
Quinn MA, 2005	IFX	csDMARD naive Early (<1 year) Aggressive disease (PISA score)	ACR20 at 14 weeks ACR50 at 1 year	60% in IFX+MTX 80% in IFX+MTX
PREMIER, 2006	ADA	csDMARD naive Early (<3 years) Aggressive disease	ACR50 at 1 year	62% in ADA+MTX
GO-BEFORE, 2011	GOL	csDMARD naive Early (< 3 years) active disease	ACR50 at 24 weeks	39% in GOL (combined)+MTX
COMET, 2008	ЕТА	csDMARDs naive Early (< 2 years) active disease	ACR50 at 1 year	71% in ETA50+MTX
C-EARLY, 2016	СZР	csDMARDs naive Early (< 1 year) active poor prognosis	ACR50 at 1 year	62% in CZP+MTX

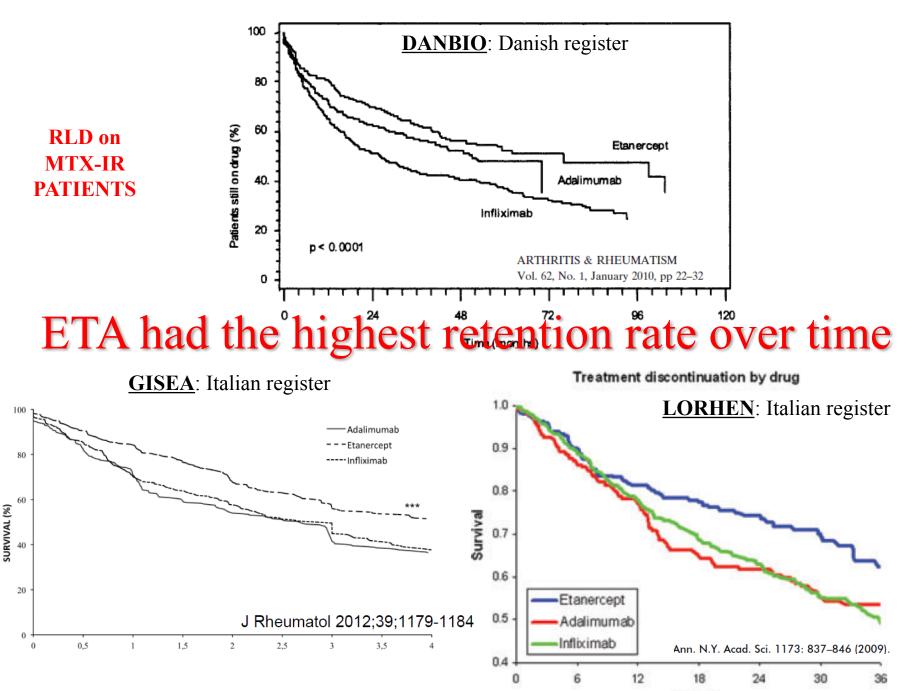
TNFis in MTX-IR RA

				Treatment group			
Anti-TNFα agent	Disease Population	Efficacy	(A) MTX monotherapy	(B) Anti-TNFα monotherapy	(C) MTX + Anti-TNFα	P-Value	References
Adalimumab	MTX-inadequate	ACR20 at Week 24	30%	NS	63%	≤0.001	22
	response	ACR20 at Week 52	24%	NS	59%	≤0.00 I	
		ACR50 at Week 24	10%	NS	39%	≤0.001	
		ACR50 at Week 52	10%	NS	42%	≤0.001	
		Hearr change in Sharp	2.1	CPT	0.1	≤0.001	
		score through Week 52					
	MTX-naive	ACR20 at Week 52	63%	54%	73%	<0.001 (C vs B) = 0.022 (C vs A)	23
		ACR50 at Week 52	46%	41%	62%	<0.001 (C vs B)	
						<0.001 (C vs A)	
		Mean change in sharp	5.7	3.0	1.3	=0.002 (C vs B)	
		score through week 52				<0.001 (C vs A)	
Certolizumab	MTX-inadequate	ACR20 at week 24	14%	NS	59%	<0.001	96
pegol	response	ACR20 at week 52	13%	NS	53%	<0.001	
		ACR50 at week 24	8%	NS	37%	<0.001	
		ACR50 at week 52	8%	NS	38%	<0.001	
		Mean change in sharp	2.8	NS	0.4	<0.001	
		score through week 52					
Etanercept	MTX-inadequate	ACR20 at week 24	27%	NS	71%	<0.001	21
	response	ACR50 at week 24	3%	NS	39%	<0.001	
	DMARDs (other than	ACR20 at week 52	59%	66%	75%	<0.05 (C vs B)	14, 48
	MTX)-inadequate response					<0.05 (C vs A)	
		ACR50 at week 52	36%	43%	63%	<0.05 (C vs B)	
						<0.05 (C vs A)	
		Mean change in sharp	2.80	0.52	-0.54	<0.05 (C vs B)	
		score through week 52				<0.05 (C vs A)	
Golimumab	MTX-inadequate	ACR20 at week 24	28%	NS ^b	60%	<0.001	97
	response	ACR50 at week 24	14%	NS ^b	37%	<0.001	
	MTX-Naive	ACR20 at week 24	49%	NS ^b	62%	=0.028	25, 58
		ACR50 at week 24	29%	NS°	40%	=0.038	
		Mean change in sharp	1.4	NS ^b	0.7	=0.015	
		score through week 52					
Infliximab	MTX-inadequate	ACR20 at week 30	20%	NS	50%	<0.001	10, 20
	response	ACR20 at week 54	17%	NS	42%	<0.001	
		ACR50 at week 30	5%	NS	27%	<0.001	
		ACR50 at week 54	8%	NS	21%	=0.027	
		Mean change in sharp	7.0	NG	1.3	<0.001	
		score through week 54					
	MTX-Naive	ACR20 at week 54	54%	NS	62%	=0.028	11
		ACR50 at week 54	32%	NS	46%	<0.001	The lowership
		Mean change in sharp	3.7	NS	0.4	<0.001	The Journal of
		score through week 54					2015 55(\$3)


The Journal of Clinical Pharmacology 2015 55(S3) S60-S74

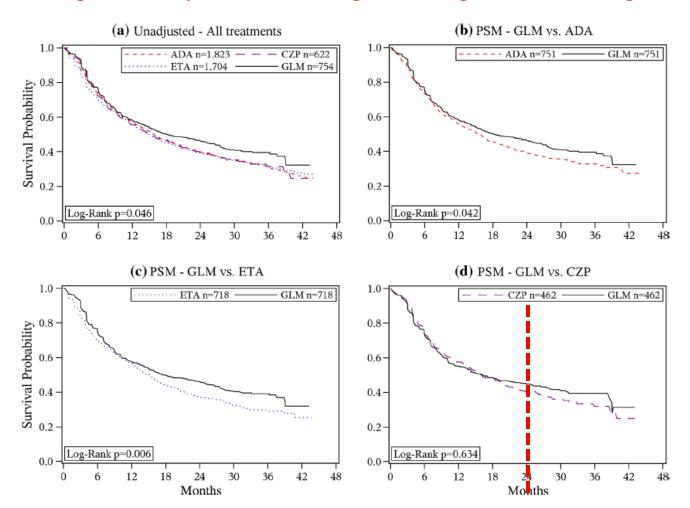
		TNF-bloc	:ker	Contr	ol		Risk Ratio		Risk I	Ratio	
-	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I M	-H, Rando	om, 95% Cl	
	1.11.1 Infliximab										
	Maini 1999	94	333	4	84	6.2%	5.93 [2.24, 15.66]				
	Schiff 2008	61	165	22	110	8.7%	1.85 [1.21, 2.82]			-	
	Subtotal (95% CI)		498		194	14.9%	3.08 [0.91, 10.43]		1		
	Total events	155		26		12 0404					
	Heterogeneity: Tau ² = 0			•	= 0.02)	; 1- = 81%					
	Test for overall effect: 2	1.00 (F	- 0.07)								
	1.11.2 Etanercept										
	Moreland 1999	31	78	4	80	6.1%	7.95 [2.94, 21.47]				
DCT	Weinblatt 1999	23	59	1	30	3.0%	11.69 [1.66, 82.47]				
RCTs on	Subtotal (95% CI)		137		110	9.1%	8.61 [3.55, 20.86]				
	Total events	54		5							
MTX-IR	Heterogeneity: Tau ² = 0			•	= 0.72)	; I² = 0%					
DATIENTO.	Test for overall effect: 2	.= 4.76 (P	< 0.000	JU1)							
PATIENTS:	1.11.3 Adalimumab										
	Keystone 2004(b)	81	207	19	200	8.5%	4.12 [2.60, 6.53]				
	Kim 2007	28	65	19	200	8.3%	4.53 [2.72, 7.56]				
ACR50	Miyasaka 2008	50	178	5	87	6.6%	4.89 [2.02, 11.82]				
ACINSU	Van de Putte 2004	61	216	9	110	7.6%	3.45 [1.78, 6.69]				
response at 6	Weinblatt 2003	68	140	5	62	6.7%	6.02 [2.55, 14.20]				
response at o	Subtotal (95% CI)		806		659	37.8%	4.34 [3.30, 5.70]			•	
months	Total events	288		57							
monting	Heterogeneity: Tau ² = (-		= 0.88)	; I² = 0%					
	Test for overall effect: 2	. = 10.56 (F	- < 0.00	JUU1)							
	1.11.4 Golimumab										
	Emery 2009	174	477	47	160	9.2%	1.24 [0.95, 1.62]		ł	-	
	Keystone 2008(a)	88	311	18	133	8.5%	2.09 [1.31, 3.33]				
	Subtotal (95% CI)		788		293	17.7%	1.56 [0.93, 2.60]		1	•	
	Total events	262		65							
	Heterogeneity: Tau ² = 0			•	= 0.05)	; l² = 73%					
	Test for overall effect: 2	: = 1.69 (P	= 0.09)	1							
	1.11.5 Certolizumab										
	Fleischmann 2009	25	111	4	109	6.0%	6.14 [2.21, 17.05]				
	Keystone 2008(b)	302	783	15	199	8.4%	5.12 [3.12, 8.39]				
	Smolen 2009	161	492	4	127	6.2%	10.39 [3.93, 27.48]				-
	Subtotal (95% CI)		1386		435	20.6%	5.95 [3.97, 8.92]			•	
	Total events	488		23							
	Heterogeneity: Tau ² = 0 Test for overall effect: 2				= 0.43)	; I ² = 0%					
	Total (95% CI)		3615		1691	100.0%	4.07 [2.70, 6.13]			•	
	Total events	1247		176							
	Heterogeneity: Tau ² = 0).46; Chi² =	82.00,	df = 13 (P < 0.0	00001); l² =	= 84%	0.01 0.1		10	100
	Test for overall effect: Z	•								Favours expe	
	Test for subgroup differ	ences: Not	applica	able							

Citation: Aaltonen KJ, Virkki LM, Malmivaara A, Konttinen YT, Nordström DC, et al. (2012) Systematic Review and Meta-Analysis of the Efficacy and Safety of Existing TNF Blocking Agents in Treatment of Rheumatoid Arthritis. PLoS ONE 7(1): e30275. doi:10.1371/journal.pone.0030275


Persistence with Anti-Tumor Necrosis Factor Therapies in Patients with Rheumatoid Arthritis: Observations from the RADIUS Registry J Rheumatol 2011;38:1273–81

RLD on
MTX-IR**RADIUS1**: US register, including 2418 RA patients, starting their 1° TNFi**MTX-IR**
PATIENTS

Mean persistence rates were similar among first-course TNFi

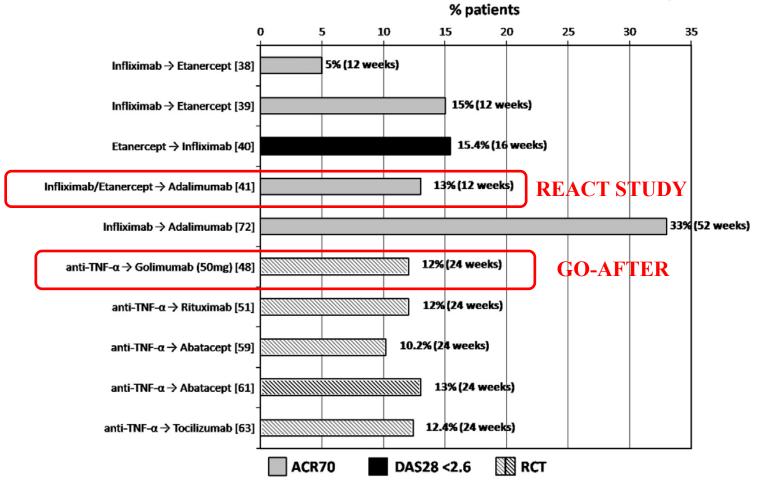

Discontinuations of first-course therapy due to ineffectiveness were similar among treatments

Months

Treatment persistence among patients with immune-mediated rheumatic disease newly treated with subcutaneous TNF-alpha inhibitors and costs associated with non-persistence

Rheumatol Int (2016) 36:987-995

Retrospective analysis on Swedish register among AS, PsA and RA patients

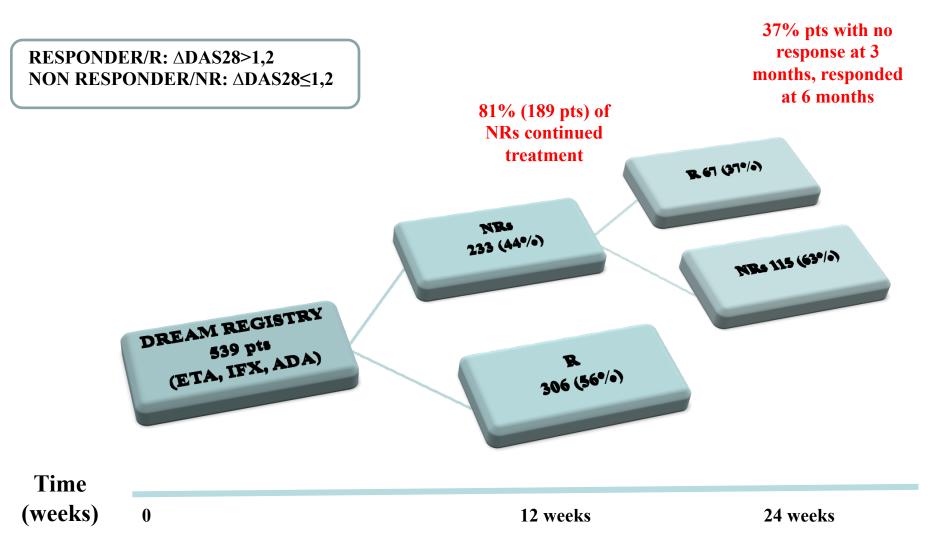

TNFis in TNFi experienced RA

Review

Strategies after the failure of the first anti-tumor necrosis factor $\boldsymbol{\alpha}$ agent in rheumatoid arthritis

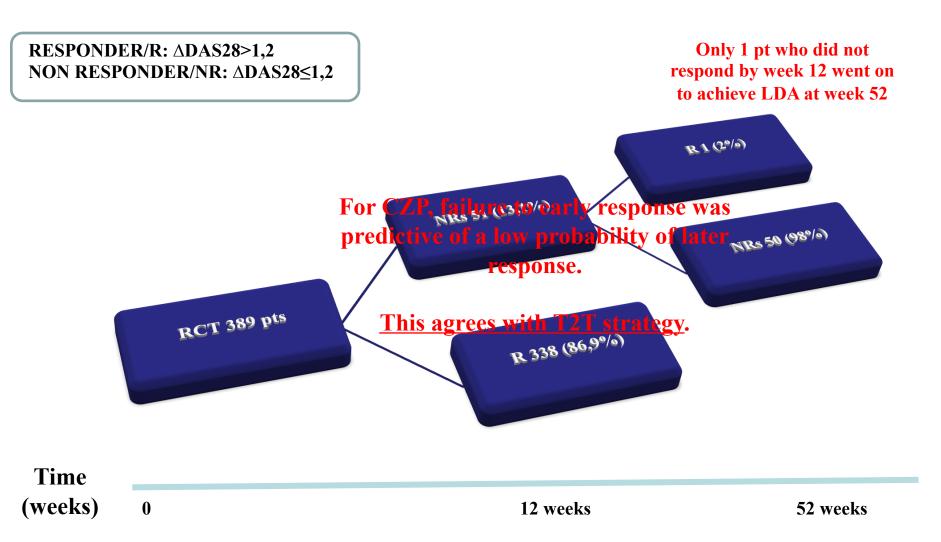
Charalampos Papagoras, Paraskevi V. Voulgari, Alexandros A. Drosos *

Autoimmunity Reviews 9 (2010) 574-582


Twenty-eight-week results from the **REALISTIC** phase IIIb randomized trial: efficacy, safety and predictability of response to certolizumab pegol in a diverse rheumatoid arthritis population

Weinblatt et al. Arthritis Research & Therapy (2015) 17:325

а Placebo→CZP $CZP \rightarrow CZP$ 80 Week 28 Week 28 Week 12 Week 12 70 62.4 54,955.2 60 Patients (%) 50 39.3 40 34.530.4 30 25 20.9 20 5.9 2.713.3 10 0 113 484 113 484 71 286 n = 113 484 71 286 71 286 Prior anti-TNF ACR20 ACR50 ACR70


37% TNFi experienced patients

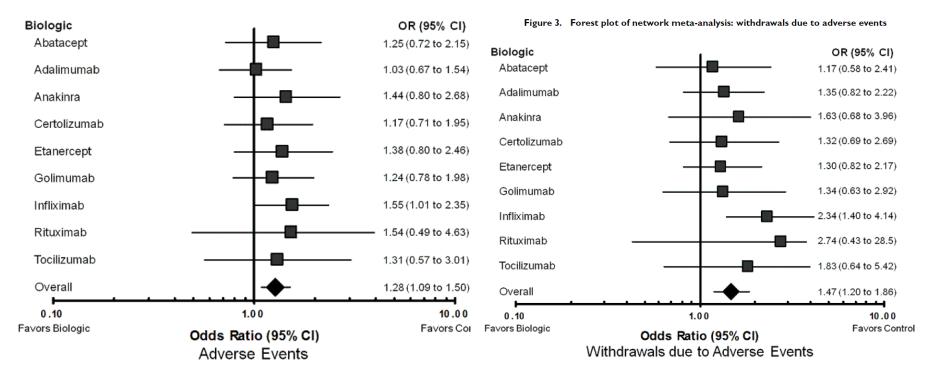
Might we promptly identify not responding patients to (each) TNFi? Evaluating guidelines on continuation of anti-tumour necrosis factor treatment after 3 months: clinical effectiveness and costs of observed care and different alternative strategies

Timing and Magnitude of Initial Change in Disease Activity Score 28 Predicts the Likelihood of Achieving Low Disease Activity at 1 Year in Rheumatoid Arthritis Patients Treated with Certolizumab Pegol: A Post-hoc Analysis of the RAPID 1 Trial

J Rheumatol 2012;39;1326-1333

• RCTs

• Real life data (RLD)


[Overview of Reviews]

Adverse effects of biologics: a network meta-analysis and Cochrane overview Cochrane Database of Systematic Reviews 2011, Issue 2.

Cochrane

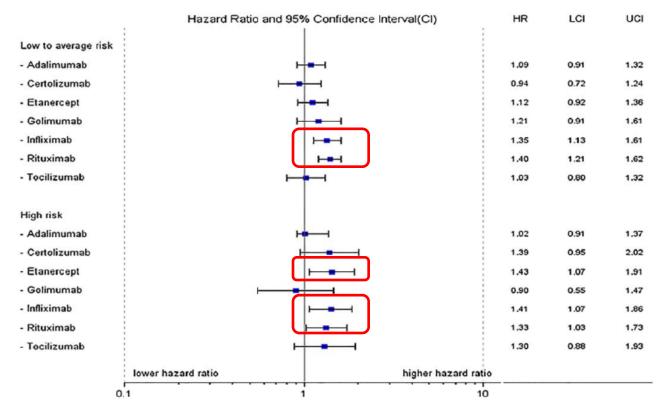

160 RCTs with 48,676 participants and 46 extension studies with 11,954 participants. The median duration of RCTs was six months and 13 months for OLEs.

Figure 2. Forest plot of network meta-analysis: total adverse events

Comparative Risk of Hospitalized Infection Associated With Biologic Agents in Rheumatoid Arthritis Patients Enrolled in Medicare ARTHRITIS & RHEUMATOLOGY Vol. 68, No. 1, January 2016, pp 56–66

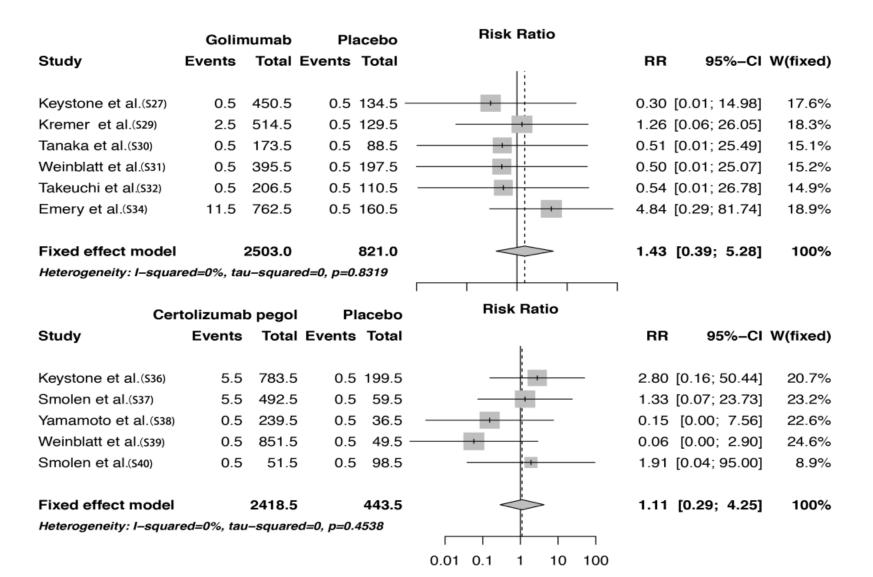
Retrospective analysis of 31,801 new biologic treatment episodes in patients who had previously received another biologic agent.

After adjustment for the infection risk score and other confounders, the risk of hospitalized infection was significantly higher for IFX, ETA and RTX.

Specific clinical setting

• Latent TBCi

• Pregnancy


• Single site inflammation

The Risk of Tuberculosis in Patients with Rheumatoid Arthritis Treated with Tumor Necrosis Factor- α Antagonist: A Metaanalysis of Both Randomized Controlled Trials and Registry/Cohort Studies

J Rheumatol 2015;42;2229-2237

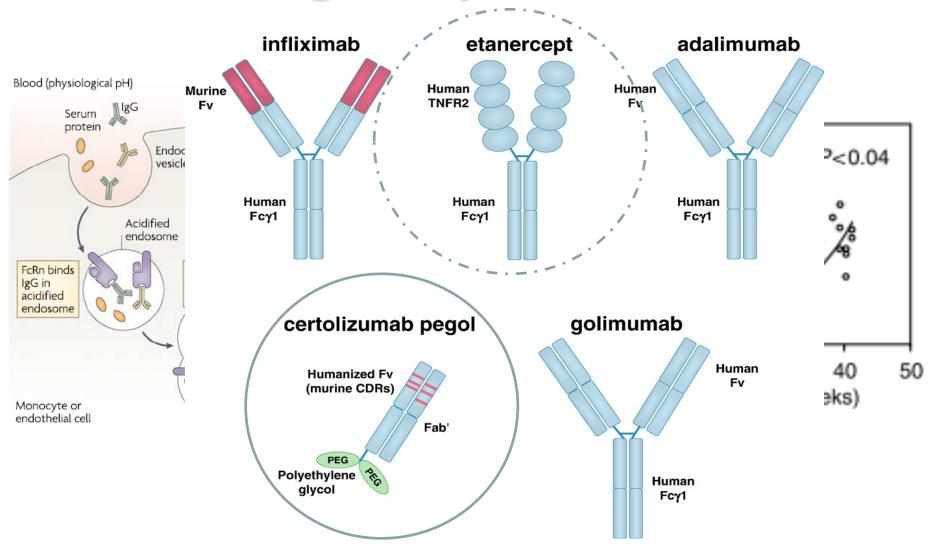
TBC risk ratio for each <u>TNFi vs placebo</u> in unbiased RCTs

0 cases in 9 RCTs with ETN!

The Risk of Tuberculosis in Patients with Rheumatoid Arthritis Treated with Tumor Necrosis Factor- α Antagonist: A Metaanalysis of Both Randomized Controlled Trials and Registry/Cohort Studies

J Rheumatol 2015;42;2229-2237

	Inflixi		Etane			Incidence Rate Ratio	Incidence Rate Ratio
Study or Subgroup	Events	Pys	Events	Pys	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Arkema et al.(24)	8	11902	3	19044	3.6%	4.27 [1.13, 16.08]	
Askling et al.(13)	11	2050	6	1722	10.1%	1.54 [0.57, 4.16]	- -
Atzeni et al.(22)	6	2320	1	2578	1.5%	6.67 [0.80, 55.34]	
Dixon et al.(18)	12	9730	8	15070	9.7%	2.32 [0.95, 5.68]	
Favalli et al (25)	3	809	1	429	2.0%	1.59 [0.17, 15.25]	·
Gomez-Reino et al.(17)	5	1303	1	1740	1.3%	6.68 [0.78, 57.08]	
Seong et al. (16)	2	78	0	74	0.8%	4.75 [0.23, 97.26]	
Tubach et al.(19)	36	17890	5	29433	5.9%	11.85 [4.65, 30.18]	
Wallis et al.(14)	106	196989	32	112994	63.0%	1.90 [1.28, 2.82]	1
Winthrop et al. (21)	5	6024	2	11765	2.1%	4.88 [0.95, 25.16]	
Total (95% CI)		249095		194849	100.0%	2.78 [2.10, 3.69]	•
Total events	194		59				
Heterogeneity: Chi ² =	16.82, d	f = 9 (P =	0.05); I ²	= 46%			
Test for overall effect:	Z = 7.14	(P < 0.0	0001)				0.01 0.1 1 10 100


TBC risk of IFX was 2,78 higher than ETN.

TBC risk of ADA was 3,88 times of ETN, both with statistical significance.

	Adalim	umab	Etanercept			Incidence Rate Ratio	Incidence Rate Ratio			
Study or Subgroup	Events	Pys	Events	Pys	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% C	I		
Arkema et al.(24)	6	11447	3	19044	15.9%	3.33 [0.83, 13.30]		-		
Atzeni et al.(22)	2	1772	1	2578	5.7%	2.91 [0.26, 32.06]				
Dixon et al. (18)	20	9224	8	15070	42.8%	4.08 [1.80, 9.27]				
Favalli et al (25)	1	524	1	429	7.7%	0.82 [0.05, 13.05]				
Gomez-Reino et al.(17) 2	565	1	1740	3.5%	6.16 [0.56, 67.80]	+			
Tubach et al.(19)	8	10338	5	29433	18.3%	4.56 [1.49, 13.92]		-		
Winthrop et al.(21)	3	3285	2	11765	6.1%	5.37 [0.90, 32.14]				
Total (95% CI)		37155		80059	100.0%	3.88 [2.31, 6.53]	•			
Total events Heterogeneity: Chi ² = Test for overall effect:				= 0%			0.01 0.1 1 10	0 100		

	Infliximab		Adalimumab		Incidence Rate Ratio		Incidence Rate Ratio		
Study or Subgroup	Events	Pys	Events	Pys	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI		
Arkema et al.(24)	8	11902	6	11447	13.0%	1.28 [0.45, 3.69]			
Atzeni et al.(22)	6	2320	2	1772	4.8%	2.29 [0.46, 11.34]	- -		
Dixon et al.(18)	12	9730	20	9224	43.8%	0.57 [0.28, 1.16]	-#+		
Favalli et al (25)	3	809	1	524	2.6%	1.94 [0.20, 18.63]			
Gomez-Reino et al.(17)) 5	1303	2	565	5.9%	1.08 [0.21, 5.57]			
Tubach et al.(19)	36	17890	8	10388	21.6%	2.61 [1.22, 5.62]			
Winthrop et al.(21)	5	6024	3	3285	8.3%	0.91 [0.22, 3.80]			
Total (95% CI)		49978		37205	100.0%	1.28 [0.87, 1.89]	•		
Total events	75		42						
Heterogeneity: Chi ² =	9.18, df	= 6 (P =	0.16); I ²	= 35%					
Test for overall effect:	Z = 1.24	(P = 0.	21)				0.01 0.1 1 10 100		

Pregnancy and TNFi

Placental Transfer of Anti-Tumor Necrosis Factor Agents in Pregnant Patients with Inflammatory Bowel Disease

Clin Gastroenterol Hepatol. 2013 March ; 11(3): 286-e24.

	IFX	Range	ADA	Range	CZP	Range	
Ν	11		10		10		
Median Maternal Age (yrs)	36	29-40	32.5	25-40	28	22-42	
Disease type (CD:UC)	7:4		8:2		10:0		
Median Disease Duration (years)	10	2-24	11	2-24	6.5	1-10	
Concomitant Medications	ev	el o	f p	lac	ent	al 1	ransfei
• 5 Aminosalicylates	7		3		2		
Azathioprine/6MP	3		0		2		
Prednisone	2		1		3		
Patients exposure to a	nti-TNI	agent by	Trimester	r (n)	_		
Conception/Trimester 1	11		10		7		
Trimester 2	11		10		9		
Trimester 3	11		10		10		
Post-Partum	11		9		9		
Median Number of drug doses in pregnancy	I		18	14-32	8	3-12	

Ratio cord/mother (median %) at birth

CZ

160%

3,9%

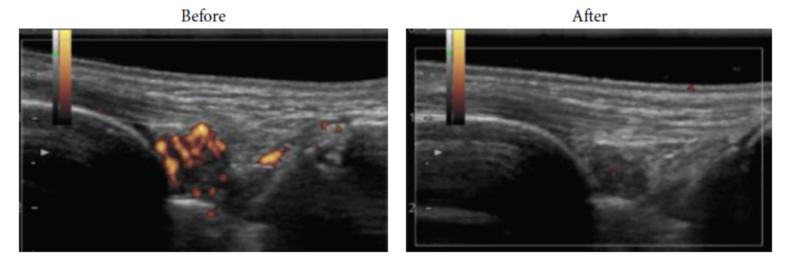
153%

The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation

Götestam Skorpen C, et al. Ann Rheum Dis 2016;75:795-810.

Points to consider for use of antirheumatic drugs in pregnancy*					
1	csDMARDs [‡] proven compatible with pregnancy are hydroxychloroquine, chloroquine, sulfasalazine, azathioprine, ciclosporin, tacrolimus and colchicine. They should be continued in pregnancy for maintenance of remission or treatment of a disease flare.	В			
2	csDMARDs‡ methotrexate, mycophenolate mofetil and cyclophosphamide are teratogenic and should be withdrawn before pregnancy.	В			
2					
	mong bDMARDs¶ continuation of tumour necrosis factor (TNF) inhibitors during the first part of pregnancy should be considered. ertolizumab may be considered for use throughout pregnancy due to low rate of transplacental passage.	Etanercept and			
6					
0	Among bDMARDs¶ continuation of tumour necrosis factor (TNF) inhibitors during the first part of pregnancy should be considered. Etanercept and certolizumab may be considered for use throughout pregnancy due to low rate of transplacental passage.	В			
7		B			

BSR and BHPR guideline on prescribing drugs in pregnancy and breastfeeding—Part I: standard and biologic disease modifying anti-rheumatic drugs and corticosteroids


Recommendations for anti-TNF medications in pregnancy and breastfeeding

- (i) Infliximab (IFX) may be continued until 16 weeks and etanercept (ETA) and adalimumab (ADA) may be continued until the end of the second trimester (LOE 2-, GOR D, SOA 98.9%).
- (ii) To ensure low/no levels of drug in cord blood at delivery, ETA and ADA should be avoided in the third trimester and IFX stopped at 16 weeks. If these drugs are continued later in pregnancy to treat active disease, then live vaccines should be avoided in the infant until 7 months of age (LOE 3, GOR D, SOA 98.9%).
- (iii) Certolizumab pegol is compatible with all three trimesters of pregnancy and has reduced placental transfer compared with other TNF inhibitors (TNFis) (LOE 2-, GOR D, SOA 97.9%).
- (iv) Golimumab is unlikely to be harmful in the first trimester (LOE 4, GOR D, SOA 97.9%)
- (v) Women should not be discouraged from breastfeeding on TNFis, but caution is recommended until further information is available (LOE 3, GOR D, SOA 98.4%).
- (vi) Based on limited evidence IFX, ETA and ADA are compatible with paternal exposure (LOE 2–, GOR D, SOA 98.9%).

Case Report

Effectiveness of Certolizumab Pegol in Treating Rheumatoid Arthritis Patients with Persistent Inflamed Residual Mono- or Oligosynovitis Resistant to Prior TNF- α Inhibitors

Case Reports in Rheumatology Volume 2015, Article ID 348614

As shown in animal models, CZP penetrates inflamed joints more effectively than other TNFi.

Tailored first-line biologic therapy in patients with rheumatoid arthritis, spondyloarthritis, and psoriatic arthritis

Seminars in Arthritis and Rheumatism 45 (2016) 519-532

Contraception Stop TNFi at pregnancy test + If active disease, consider CZP

Fertile women/ pregnancy

ABA, ETA

RA

CZP (higher penetration and retention in inflamed tissues)

Less immunogenic TNFi (CZP)

Other MoA (ABA, TCZ)

Consider ETA

Tailored first-line biologic therapy in patients with rheumatoid arthritis, spondyloarthritis, and psoriatic arthritis

Seminars in Arthritis and Rheumatism 45 (2016) 519-532

• Consider patients' characteristics, preferences and compliance

Conclusions

- Differences among TNFis in structures and mechanisms of action may be responsible for differences in efficacy and tolerability issues.
 - In some clinical setting, TNFi choice might be oriented.

• Due to its unique structure, CZP might be considered in case of (planned) pregnancy, single site inflammation, higher risk of allergic reaction.

• ETA could be considered in case of latent TBCi.